Overview of Retrofit Programs in the Northeast

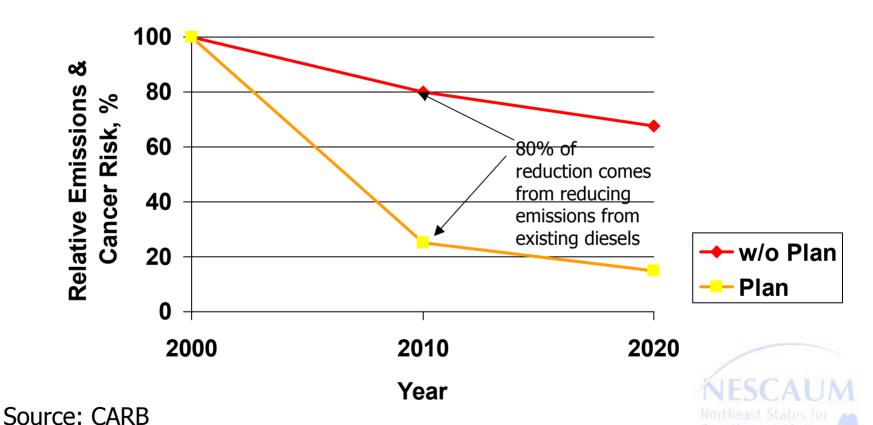
Coralie Cooper, NESCAUM August 17, 2005

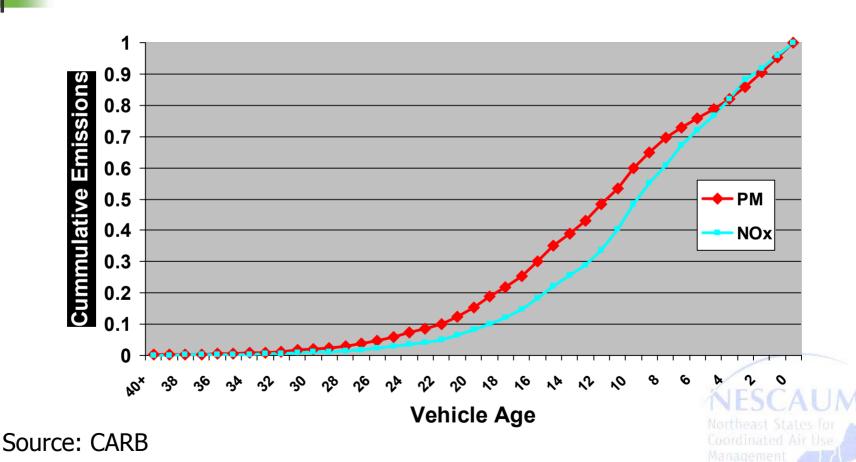
Connecticut Diesel Emission Control Technology Forum Hartford, CT

Presentation Overview

- Importance of reducing in-use diesel emissions
- Overview of existing retrofit programs
- Specifics on several projects
- Policies for reducing diesel emissions
- Conclusions

Diesel Emission in the Northeast


- 1/3 of total NOx emissions in the region
- Up to 80% of mobile source particulate emissions
- Contribute significantly to toxic emissions - such as formaldehyde, and acetaldehyde


Importance of Reducing In-Use Diesel Emissions

- Durability of diesel engines means that "legacy" diesels will be in operation for many years
- Older engines were manufactured to less stringent emissions standards
- Even retrofit of relatively new engines can yield substantial reductions - especially for nonroad engines
- A substantial fraction of emissions inventory is from legacy engines

Importance of Cleaning Up In-use Diesels

Cumulative Emissions By Age – Diesel Trucks

Examples of Vehicles/Equipment that have been retrofitted

- Construction equipment
 - Big Dig, Boston
 - 7 World Trade Center, NYC
 - Q-Bridge, CT
 - NYNJ Port tenant operated construction equipment
- Sanitation trucks DSNY
- Refuse collection trucks
 - Waste Management
- Long haul trucks
 - UPS SCR/DPF demonstration
 - truck stop electrification
- Delivery trucks Clem Snacks, NYC

Retrofit examples (continued)

- Tour buses
 - Coach USA
 - New York Downtown Alliance
- Urban buses
 - NYCTA
 - MBTA
- Ferries
 - Staten Island ferry
 - Private ferries in New York Harbor
- School bus retrofit projects
 - Norwich, New Haven, Hartford, Bridgeport, CT
 - Boston, Medford, MA
 - Maine
 - Camptown, NJ

- 8 pieces of equipment
- Retrofit technology: oxidation catalysts
- Installation had to fit with demanding work schedules for equipment
- Backhoe, excavator, tower crane, generator, genset, and others

DOC retrofit – Tower Crane, 600HP Cummins (16L)

Off-Road - Construction

PANYNJ – World Trade Center Path Station Rebuild

2 Caterpillar Loaders

ULSD, JMI DPF

Caterpillar Genset

ULSD

Retrofit Technology At A Glance - DPF

Benefits	Drawbacks
1. Very high total PM	1. Cost.
reduction performance	2. Requires ULSD.
(90%).	3. Requires threshold exhaust
2. Comparatively easy	temperature to ensure
installation – not as	regeneration.
straightforward as the	4. Requires periodic (usually
DOC.	yearly) removal and cleaning
3. Passive regeneration is	to remove unregenerated ash
unnoticed by the vehicle	deposits.
operator.	5. Weight/"mounting".
	NESC

Mack Truck SEP

- Install 158 diesel oxidation catalysts (DOC)
- Install 30 diesel particulate filters (DPF)
- Purchase and put into service ten selective catalytic reduction (SCR) heavy-duty diesel trucks
- Purchase and put into service five combination SCR and DPF trucks

- Retrofitted 70 vehicles with DPFs
- 2 trucks retrofitted with SCR
- 1 million miles in service
- Demonstrated that DPFs can work for this application in cold weather

Marine engine retrofits

- Staten Island ferry (Alice Austin)
 - propulsion engine: 1986 Caterpillar 3516a (2 engines)
 - NOx reduction: 16 tpy
 - Retrofit technology: SCR
- New York harbor private ferries
 - DPF, DOC and other technologies

Technologies Used

- Selective Catalytic Reduction (SCR)
- Particulate Filters (DPF)
- Oxidation Catalyst (DOC)
- Fuels changes
 - Ultra low sulfur diesel (ULSD)
 - Emulsified diesel
 - others
- Crankcase
- Others

Emissions Reductions

- DPF 90% PM reduction
- DOC 25% PM reduction, up to 90%
 HC and CO reduction
- SCR 70% 90% NOx reduction
- emulsified diesel 20% NOx reduction,
 ~30% PM reduction
- Other technologies include crankcase retrofit kits, biofuels, replacement, rebuilding, idling reduction

Technology Match: Issues to Consider

- Duty cycle (exhaust temperatures) important for technology match
- Space constraints must be considered
- Equipment/vehicle operator view
- Weight (additional brackets sometimes necessary)
- Down time constraints
- Fueling arrangements

Examples of Retrofit Policies

- Quasi-mandatory
 - contractual requirements
- Mandatory
 - California retrofit regulations
 - New Jersey retrofit legislation
 - Local Law 77 in New York
- Voluntary
 - state agency retrofit commitments
 - EPA Retrofit program

California Retrofit Program

Transit buses	2000

Refuse	haulers	2003
- 110100	11441010	

Truck	TRUs	2004
IIGCI	11105	200 I

- Portable engines 2004
- locomotive/harbor craft fuel 2004
- Stationary engines 2003
- Bus/truck idling

California Regulatory Approach

- Replace older engines
 - Re-power
 - New vehicle
- Retrofit mid-aged engines

Filters 85% PM reduction

Catalysts 25% PM reduction

Other 50% PM reduction

Conclusions

- Engines from many sectors have been retrofitted - resulting in significant reductions in PM, NOx, and toxics.
- Substantial technical data have been gathered on which technologies can be used in different circumstances.
- Technical retrofit issues exist (temperature, space) that require a careful evaluation of the engine/retrofit technology combination.

- Emissions reductions can be achieved for most - if not all - engines.
- Widespread availability of cleaner diesel fuel in 2006 will facilitate retrofits.
- Substantial additional reductions can be achieved from the existing fleet of highway and nonroad diesels.

